基于达布变换的带三角势的Gross Pitaevskii方程的孤子解

打开文本图片集
摘要:研究了一类带三角势的Gross Pitaevskii方程,首先求出该方程的Lax对;其次给出该方程n次达布变换的表达式,并由此得到n孤子解;然后通过选取零种子解,求得了该方程的单孤子解和双孤子解的具体表达式。最后通过Matlab分析单孤子解和双孤子解的性质,重点讨论了参数变化对孤子的影响。
关键词:带三角势的Gross Pitaevskii方程;玻色-爱因斯坦凝聚;Lax对;达布变换;孤子解
中图分类号:O24;O29文献标志码:A文章编号:1002-4026(2022)03-0115-08
开放科学(资源服务)标志码 (OSID):
Soliton solutions of Gross Pitaevskii equations with trigonometric
potential via Darboux transformation
LIU Shu-li,ZHANG Jin-yu, LI Chun-hui,WANG Xiao-li *
(School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China)
Abstract ∶Herein, a class of Gross Pitaevskii (GP) equations with a trigonometric potential is studied. First, the Lax pair of GP equations is obtained. Second, the n-th Darboux transformation of the equations is provided and the n-soliton solution is obtained. Third, by selecting a zero seed solution, specific expressions of the single soliton solution and double soliton solution of the equations are obtained. Subsequently, Matlab is used to analyze the properties of the single and double soliton solutions, focusing on the influence of changes in parameters on the soliton.
Key words ∶Gross Pitaevskii equations with trigonometric potential; Bose-Einstein condensation; Lax pair; Darboux transformation; soliton solution
非线性薛定谔方程形式为
iφt+φxx+2|φ|2φ=0, (1)
这是一个重要的可积方程[ 1],与光纤通信等物理中的非线性问题有密切的联系[ 2]。(剩余7843字)