基于双模态融合的钢轨表面缺陷分割研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:因长期受反复荷载作用,高速铁路钢轨会产生表面缺陷,为了提升复杂场景下多类多尺度钢轨表面缺陷检测的精度与速度,设计了一种基于双模态融合的钢轨表面缺陷分割网络(DAFNet)。首先构建了一个包含可见光和红外通道的钢轨表面缺陷数据集,并采用改进的双分支网络架构,提高了分割速度;同时,设计了双模态自适应融合模块(BAFM),实现了特征的自适应融合,提高了复杂场景下钢轨表面缺陷的分割精度;此外,设计了空间细节提取模块(SDEM)和关键信息增强模块(KIEM),进一步提高了对缺陷边缘的感知度,解决了复杂场景下缺陷与背景对比度不高的问题。(剩余11880字)

monitor