基于马尔科夫毯的近似函数依赖挖掘算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要

近似函数依赖挖掘方法通过放宽函数依赖成立条件,允许一定比例的违反,保证原本成立的函数依赖在噪声数据中仍然可以被挖掘出来。然而,现有的发现算法在放宽函数依赖成立条件之后,容易挖掘出大量左部属性数量较多的虚假函数依赖,导致挖掘结果的准确率显著降低。为了解决这一问题,提出基于马尔科夫毯的近似函数依赖挖掘算法,利用马尔科夫毯剪枝左部属性搜索空间,缩小决定项的候选集合,并通过向下泛化算法减少了误差的计算次数,同时降低了复杂度。(剩余14244字)

monitor
客服机器人