注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要: 利用斯皮尔曼秩相关系数(SRCC)、贝叶斯(Bayesian)、k最近邻(KNN)算法提出了一种新的航空发动机剩余使用寿命预测方法。为解决关键特征提取不足问题,首先,利用SRCC方法对发动机的历史多元监测特征进行筛选,提取出衰退性能趋势明显的监测特征作为预测模型的输入;其次,构建了基于欧式距离的k最近邻回归预测模型,利用贝叶斯更新公式对KNN中的超参数模型进行训练,求解目标函数并返回训练模型最优超参数值与最小均方根误差;最后,推导航空发动机剩余使用寿命(RUL)概率密度函数解析式,得到发动机RUL预测结果。(剩余11706字)
登录龙源期刊网
购买文章
基于SRCC与Bayes_KNN的涡扇发动机剩余使用寿命预测
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00