基于1DCNN-GWO-SVM的柴油机喷油系统故障诊断方法研究

打开文本图片集
摘要: 准确、有效的故障诊断是柴油机安全可靠运行的重要保障。基于热工参数诊断的方法存在测点多、专业性强等问题,传统机器学习结合振动信号诊断方法存在人为影响因素过高、不确定性大等问题,因此提出了一种基于1DCNN-GWO-SVM的柴油机喷油系统故障诊断方法。首先利用一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)对时域下的柴油机振动加速度信号进行自学习特征提取,然后利用提取到的特征向量训练支持向量机(support vector machine,SVM)分类模型,并利用灰狼优化算法(grey wolf optimization,GWO)对SVM的C,g等超参数进行寻优,以此来实现对柴油机的“端对端”故障诊断。(剩余11532字)