考虑历史退化信息融合的电池健康状态估计研究

打开文本图片集
主题词:锂离子电池 健康状态 特征提取
中图分类号:U46;TP18;TN303.1 文献标志码:A DOI:10.19620/j.cnki.1000-3703.20250111
ResearchonBatteryStateofHealth Estimationwith Historical DegradationInformation Fusion
ZhouDinghual,ZuoPeiwen²,ZhuZhongwen’,QiuXin',MaQilong1 (1.School of Automotiveand Transportation Engineering,Hefei UniversityofTechnology,Hefei23ooo9;2.China AutomotiveInformation Technology(Tianjin) Co.,Ltd., Tianjin,3O0000)
【Abstract】Inorder toaccurately estimate the State of Health (SOH)of lithium-ion bateries,this paper proposes an advanced SOHestimation methodthatintegrates Strategic Optimization Algorithm (SOA)with Memory-Enhanced Long ShortTermMemory (MELSTM)neuralnetwork.Firstly,a Variational AutoEncoder(VAE)isutilizedtoprocessrawdata,reducing redundant informationandextracting healthindicators,therebyachievingapreciserepresentationof baterydegradation information.Subsequently,ahybridmodelcombiningSOAandMELSTMisproposedtoestimateSOHoflithium-ionbatteries. Finall,effectivenessofteproposedmethodisvalidatedusing2publicdatasetsforlitium-onbateryaging,amelyACLE andNASA.Experimentalresultsdemonstratethattheproposed method improves RMSE indicators byover30%compared with conventional LSTMalgorithm,ofering new insights and solutionsforaccurateSOHestimationof ithium-ionbattery.
Keywords:Lithium-ionbattery,StateofHealth(SOH),Featureextraction 【引用格式】周定华,左培文,朱仲文,等.考虑历史退化信息融合的电池健康状态估计研究[J].汽车技术,2025(6):28-35. ZHOUDH,ZUOPW,ZHUZW,etal.ResearchonBateryStateofHealthEstimation withHistoricalDegradation InformationFusion[J].Automobile Technology,2025(6):28-35.
1前言
锂离子电池因具有自放电率低、循环寿命长、能量密度高、功率密度高、放电平稳、工作温度范围宽、无记忆效应和环保等优势[-3],广泛应用于电动汽车、大型储能系统、航空等领域。(剩余11933字)