改进YOLOv8n的尘雾环境下目标检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

主题词:自动驾驶目标检测注意力机制多尺度特征融合尘雾环境中图分类号:U469.6;TP242.6 文献标志码:A DOI: 10.19620/j.cnki.1000-3703.20240036

ImprovedYOLOv8n ObjectDetection AlgorithminDust andFogEnvironment

WangZiyu’,ZhangJiancheng²,LiuYuansheng² (1.Scholof UrbanRail TransitandLogistics,Beijing Union University,Beijing1Oo101;2.Schoolof Robotics, Beijing Union University,Beijing100101)

【Abstract】To address the issues of missed detections,false detections and lowaccuracy in detecting smalland distant objects underadverse conditions such as dustand haze,this paper proposestheEPM-YOLOv8object detection algorithm.The Eficient ChannelAtention (ECA)moduleisintegratedintotheC2f moduleof theYOLOv8nalgorithm,enablingthebackbone network to focus more effectivelyonshallowandsmallrobjectfeatures.Byadding anadditional detectionlayeranddesigning a multi-dimension feature fusion architecture,the model'sability to extracttarget featuresandits detectionaccuracyare significantlyimproved.Furthermore,alossfunctionbasedontheMinimumPointDistance IntersectionoverUnion(MPDIoU) is employedtoenhance theprecisionofboundingboxregresion.ExperimentalresultsdemonstratethattheEPM-YOLOv8model achieves a precision ratio of 83.6% and a detection accuracy of 76.8% ,exhibiting superior detection performance under challenging conditions such as haze and dust.

Key Words:Autonomous driving,Object detection,Attention mechanism,Multi-scale feature fusion,Dusty and foggy environment

【引用格式】王子钰,张建成,刘元盛.改进YOLOv8n的尘雾环境下目标检测算法[J].汽车技术,2025(6):1-7. WANGZY,ZHANGJC,LIUYS.ImprovedYOLOv8n Object DetectionAlgorithminDustandFog Environment[J]. Automobile Technology,2025(6): 1-7.

1前言

在尘雾环境中,图像模糊、质量下降导致有效特征提取困难,目标检测任务易出现精度降低、错检和漏检等问题。(剩余8894字)

monitor