基于Sentinel-1和Sentinel-2的不同物候期农作物识别研究

打开文本图片集
摘要:为减少农作物提取过程中受光学数据成像质量的影响,基于Google Earth Engine平台,采用Sentinel-1和Sentinel-2数据,分别对小麦越冬期、返青期、孕穗期、成熟期四个物候期进行小麦和油菜的识别。使用随机森林方法对构建的光谱特征、植被指数特征、红边指数特征、纹理特征和极化特征共34个特征进行优选,构建特征集;并对比最小距离、决策树、支持向量机、随机森林四种分类器在四个物候期的识别结果,确定最优的分类器;同时还验证了极化特征在四个物候期对识别结果的影响。(剩余12201字)