基于LASSO回归的 R-vine copula 模型构建及其在化工过程故障检测中的应用

打开文本图片集
摘要:Vine copula模型在描述高维数据间的非线性、非高斯特性相依关系问题上提供了一种新的思路,在化工过程建模领域受到越来越多关注。笔者将LASSO(least absolute shrinkage and selection operator)回归引入R-vine copula(LASSO-R-vine copula,LRVC),根据变量间联系的强弱程度确定变量在R-vine矩阵中的位置,利用回归分析正则化路径选择R-vine copula矩阵结构,遵循R-vine矩阵构建规则和回归过程确定R-vine结构矩阵模型,以获得一个与变量独立性有关的稀疏矩阵模型。(剩余10578字)