基于LSTM的边境频谱占用度预测

打开文本图片集
摘要:通过长短记忆神经网络对边境频谱占用度数据进行学习,建立了基于边境频谱占用度数据特征的预测模型,分析了影响预测准确度的主要因素并得出结论。实验结果表明,文章中提出的预测模型具有较高的准确性,是一种有效的边境频谱占用度预测方法。
关键词:深度学习;LSTM;频谱占用度预测
doi:10.3969/J.ISSN.1672-7274.2022.07.008
中图分类号:TN 98 文献标示码:A 文章编码:1672-7274(2022)07-00-03
Spectrum Occupancy Prediction Based on LSTM
LU Weidong, LUO Shiwei, LIU Yizhuo
(State Radio Monitoring Center Harbin Monitoring Station, Harbin 150010, China)
Abstract: Based on the long and short memory neural network, a prediction model based on the characteristics of border spectrum occupancy data was established, and the main factors affecting the accuracy of prediction were analyzed. The experimental results show that the proposed prediction model has high accuracy and is an effective method for predicting border spectrum occupancy.
Key words: deep learning; LSTM; spectrum occupancy prediction
0 引言
频谱占用度是用来描述无线电频谱资源利用率的重要指标,其也可以反映一个地区的频谱利用率变化趋势,边境地区的无线电监测的重要任务之一就是获取准确的频谱占用度,为上级无线电主管部门制定频率使用规划和国际台站申报计划提供重要依据。(剩余1421字)