基于边界信息的自适应过采样算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 针对人工少数类过采样(synthetic minority over-sampling technique,SMOTE)算法存在样本合成区域狭小,容易将少数类泛化到多数类及引入噪声的问题,提出一种基于噪声过滤、边界点自适应采样的过采样算法。首先,该算法使用K近邻算法进行噪声过滤,接着确定边界点并在边界点中寻找合适的点作为根样本点,并以其K近邻点中与其同类且欧氏距离最远的点作为候选样本点。(剩余13368字)

monitor