基于近红外光谱结合网格搜索-随机森林-自适应提升算法无损检测牛肉新鲜度

  • 打印
  • 收藏
收藏成功


打开文本图片集

Abstract: To improve the prediction accuracy of beef freshness using near-infrared (NIR) spectroscopy,we proposeda predictive model based on the combination of grid search (GS),random forest (RF)and adaptive boosting (AdaBoost). Initially,RFandAdaBoostwereemployedtostablishaNRspectroscopypredictionmodel,followedbyanalysisof the predictionaccuracyfortotal volatilebasenitrogen (TVB-N)content inbeef.Subsequently,theRFmodel,composed of multiple weak leamers,wastrained using the training set,andAdaBoost wasused to integrate these weak learners into a strong learner through varying weights to buildan ensemble model.RF was then optimized using GS to develop an AdaBoostmodelthatintegratesGS-RFas itsweak learnerforpredictingtheTVB-Ncontentinbeef.Finally,the prediction performance ofthe GS-RF-AdaBoost model based onNIR spectroscopywasanalyzedand compared with thatof the partial least square regresson,RF,AdaBoost andRF-AdaBoost models.Theresults indicatedthatthe GS-RF-AdaBoostmodel outperformed in predicting theTVB-Ncontent inbeef with the lowestroot mean square error of predicyionset and the highestcoelationcoeffcent,coefficientofeterminationandresidual predictiondeviationofpredicyionset,which were 1.731,0.969,0.924and4.331,respectively.Thesefidingsconfirm thatintegratingGS-RF-AdaBoostmodelbasedonNIR spectroscopy can effectively enhance predictive performance regarding TVB-N content in beef.

Keywords: near infrared spectroscopy;grid search;random forest;adaptive boosting;beeffreshness

DOI:10.7506/rlyj1001-8123-20250210-032

中图分类号:TS251.7 文献标志码:A 文章编号:1001-8123(2025)11-0001-08

肉类在人们的饮食中有着举足轻重的地位。(剩余17312字)

monitor
客服机器人