注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:针对化工旋转机械故障识别困难的问题,以旋转机械离心泵为例,通过分析二维卷积神经网络存在的问题,对卷积神经网络故障识别模型进行优化。首先利用小波变换等方法对机械振动信号进行特征提取,得到显著特征集,再利用降维方法去除不必要的环境噪音等冗余特征,使特征信息更容易被卷积神经网络识别;然后构建基于一维卷积神经网络的旋转机械故障识别模型,进行特征识别;最后,通过仿真试验,对上述改进后的故障识别模型进行验证。(剩余6084字)
登录龙源期刊网
购买文章
基于卷积神经网络的化工旋转机械故障识别
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00