基于改进YOLOv7 的小目标和低对比度纸病分类算法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 随着纸机车速提升和幅宽加大,纸病出现频率随之上升。为根治纸病,需对其有效分类以溯源。但因部分纸病目标小、对比度低,分类效果欠佳。本课题提出了一种基于改进YOLOv7的分类方法,核心思想是在颈部网络改良快速跨阶段特征金字塔池化(SPPFCSPC) 模块,在感受野不变前提下提升分类速度;使用空间深度卷积替换原有的“卷积+池化层”,增强对纸病的特征提取能力;通过注意力模块(SimAM),使更多的资源集中于纸病细节,进一步提高低对比度和小目标纸病的识别效率。(剩余2822字)

目录
monitor