基于机器学习算法的企业财务舞弊预测及可解释性分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要: 财务舞弊不仅损害了投资者信心,也对资本市场产生极大影响。为预测企业的财务舞弊行为,文章选取2016-2020未发生舞弊行为与首次发生舞弊行为的企业作为研究对象,依据Python机器学习算法建立决策树、支持向量机、神经网络及逻辑回归模型,基于舞弊三因素理论选取44个指标预测企业财务舞弊行为,并通过SHAP可解释性工具重点关注单个指标变化对财务舞弊预测的重要性程度,同时分析财务指标以及非财务指标对预测财务舞弊的相互作用、预测错误的样本查看的影响。(剩余5289字)

目录
monitor