深度嵌入度量学习的机械跨工况故障识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要 传统数据驱动的机械装备故障诊断方法依赖目标工况下的完备数据,而装备实际运行工况复杂多变,难以预测,且数据获取困难。针对上述问题,提出了一种深度嵌入度量网络(Deep Embedding Metric Network, DEMN)的机械跨工况故障识别方法,该方法利用装备在已知工况下的数据学习鲁棒特征表示,建立适用于未知工况场景下的泛化智能故障识别模型。(剩余15122字)

monitor