基于双流CNN与Bi-LSTM的施工人员不安全行为轻量级识别模型

打开文本图片集
摘要:由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高效的轻量化网络ShuffleNetV2代替传统CNN以提升计算效率,同时添加卷积注意力模块获取关键特征以提高行为识别准确率;在特征融合模块中引入Bi-LSTM网络获取视频前后的关联信息,实现双流特征融合;在行为分类模块中利用注意力机制实现自适应分配权重,从而进一步提升施工人员不安全行为识别的准确率。(剩余14526字)