非线性分数阶微分方程的hp 型Legendre 谱配置法

打开文本图片集
摘要:研究了求解非线性分数阶微分方程的 hp 型 Legendre 谱配置法。首先提出将多分数阶微分方程转化成等价的 Volterra 积分方程, 其次构造了近似求解原方程的数值方法, 最后通过数值实验说明了该算法的理论正确性以及所构造数值方法的有效性。
关键词:非线性分数阶微分方程;Legendre 谱配置法;hp 型误差界
中图分类号:O 175 文献标志码:A
An hp-version Legendre spectral collocation method for nonlinear fractional differential equations
LI Shan, AN Xiao, SUN Guilei
(College of Science, University of Shanghaifor Science and Technology, Shanghai 200093, China)
Abstract: The hp-version Legendre spectral collocation method for solving nonlinear fractionaldifferential equations was studied. At first, the multifractional differential equation was transformed intoan equivalent Volterra integral equation. Then a numerical method to approximate the original equationwas constructed. Finally, the correctness of the algorithm theory and the effectiveness of the proposednumerical method were demonstrated by numerical experiments.
Keywords: nonlinear fractional differential equations; Legendre spectral collocation method; hpversion error bounds
1 问题的提出
分数阶微分方程最重要的是非局部性质, 它能有效地避免整数阶导数的局部性, 所以,分数阶导数可以更加精确地描述对历史有依赖的问题。(剩余5213字)