利用无创测量表征人体面部皮肤老化表型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要 目的:利用无创测量技术提取的中国人群面部皮肤理化参数建立表征皮肤老化表型的新指标。方法:招募100例不同年龄段的健康受试者,通过皮肤无创测试仪器检测皮肤含水量等皮肤参数,进行主成分分析(PCA)和广义线性模型分析(GLM)。结果:相关性分析发现胶原蛋白密度与年龄呈显著负相关(r=?0.31,P

关键词 皮肤表型 皮肤老化参数 PCA主成分分析 广义线性模型 无创测量

中图分类号:R334.5; R339.38 文献标志码:A 文章编号:1006-1533(2024)11-0042-04

引用本文 刘一洲, 王久存, 马彦云. 利用无创测量表征人体面部皮肤老化表型[J]. 上海医药, 2024, 45(11): 42-45; 66.

Characterization of human facial skin aging phenotypes by noninvasive measurements

LIU Yizhou1, WANG Jiucun1,2,3, MA Yanyun1,2,3

(1. School of Life Sciences, Fudan University, Shanghai 200438, China; 2. Institute of Human Phenomics, Fudan University, Shanghai 200438, China; 3. Innovative Research Unit of Population Genetics and Prevention Technologies for Skin and Skin Diseases, Chinese Academy of Medical Sciences, Shanghai 200438, China)

ABSTRACT Objective: To establish new indicators representing skin aging phenotypes using non-invasive measurement techniques to extract facial skin physicochemical parameters in a Chinese population. Methods: A total of 100 healthy subjects with different age were recruited and skin parameters such as moisture content and so on were measured by non-invasive skin testing instruments. Subsequently, principal component analysis (PCA) and generalized linear model (GLM) analyses were performed. Results: Correlation analysis showed that collagen density was significantly negatively correlated with age (r=?0.31, P

KEY WORDS skin phenotype; skin aging parameters; PCA principal component analysis; generalized linear model; noninvasive measurement

随着全球老龄化人口的增加,老化相关的研究日趋热门,其中皮肤老化的研究也逐渐受到极大的关注。(剩余6894字)

monitor
客服机器人