考虑时空特征的城市内涝智能预报模型研究

打开文本图片集
摘要:
针对传统城市内涝预报模型计算耗时长、实测内涝样本少、内涝特征因子欠考虑等问题,通过耦合SWMM模型和LISFLOOD-FP模型搭建了城市内涝机理模型,利用不同重现期下的设计暴雨进行数值模拟并生成内涝样本;基于样本和内涝特征因子构建了三维时空矩阵,实现对内涝特征因子数据的有序组织;在此基础上,将卷积神经网络(CNN)与长短时记忆网络(LSTM)进行耦合,构建了一种考虑多时空特征的城市内涝智能预报模型(CNN-LSTM);最后以三维时空矩阵为驱动,对该智能模型进行训练,选取广州市天河区的实测样本对其性能进行评估。(剩余13480字)