基于PSO-BP神经网络高速公路建设期碳排放预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:U415 文献标识码:A DOI:10.7535/hbkd.2025yx03009

Carbon emission prediction method for expressway construction period based on PSO-BP neural network

ZHAO Quansheng¹,LI Fei¹,GUO Feng'ai1,YU Jianyou 2 ,XU Shizhao 3 , HU Yunpeng4,CHU Xiaomeng5

ool of Civil Engineering,Hebei Universityof Science and Technology,Shijiazhuang,Hebei O5ool8,China; 2.Hebei Expressway Han Gang Port Company Limited,Cangzhou,Hebei O6l5oo,China;

3.SchoolofMechanicalEngineering,Hebei UniversityofScienceand Technology,Shijiazhuang,HebeiO5oo18,China; 4.Qinhuangdao Highway Construction and Development Center,Qinhuangdao,Hebei O66o99,China; 5.School of Chemical and Pharmaceutical Engineering,Hebei University of Science and Technology,Shijiazhuang, Hehei .China)

Abstract:To solvetheproblemof inaccuratecarbonemissons predictionduring the highwayconstruction period,amethodof Optimizing theback propagation(BP)neuralnetwork byparticleswarmoptimization(PSO)algorithmwas proposed topredictcarbon emisions.The12keyndicators,includingroutelength,subgradelength,pavementlngth,tunellength,ridgeandculvertlength, interchangelength,excavationvolume,filingvoue,dieselconsumption,cementconsumption,crushedstoneconsumptionadteel consumption,wererefinedfromthefourdimensionsof project length,construction,energyconsumptionandmaterialconsumption usingtheanalytichierarchyprocess(AHP).Thedatafrom36hghwayprojectswereusedasempiricalsamplesformodelrainng,nd a comparative analysis was conducted based on error indicators. The results show that the R2 value of the obtained PSO-BP model is 0.974,while the R2 value of the BP model is0.89o,with the former being closer to1.Compared to the results of life cycle assessment,thePSO-BPmodelhasasmalerdeviationfromtheactualvaluethantheunoptimizedBPmodel.Thefourlayersof the hierarchyandtheselected12keyindicatorsenablethepredictionofcarbonemisionsduringthedesignandplaningstageofhighway construction,providing reference for low-carbon highway construction.

Keywords:otherdisciplines of road engineering;carbon emisson prediction;PSO-BP neural network;modeloptimization; factor analysis

开展碳排放量预测是研究高速公路建设期碳达峰、碳中和的基础工作,这一工作不仅是制定减排策略的前置步骤,更是评估环境影响的关键工具[1-2]。(剩余13746字)

monitor