融合多种机制的交通时序数据异常检测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP183 文献标识码:A DOI:10.7535/hbkd.2025yx03003

Research on anomaly detection model for traffic time series data integrating multiple mechanisms

ZHANG Peipei,LIU Jiaqi

(SchoolofEconomicsandManagement,NorthChinaUniversityofScienceandTechnology,Tangshan,HebeiO63oo,China)

Abstract:Toenhancetheanomalyrecognitionabilityof trafictimeseriesdata,ahybrid modelwasconstructed.Firstly,the multi-headatention,residualsandprobabiliticsparseself-atentionwerecombined toformaglobalfeaturerecognition(GFR) module,enhancing theability whilereducingcomputationalcomplexity.Secondly,the dilated convolutionandmulti-scale convolution werecombined to formalocalfeaturerecognition(LFR)module,furtheroptimizing local featureextraction. Thirdly,the FreeRunning training strategy wasused to improve model robustness.Fourthly,the modules and training strategy werecombined withLSTM,whiletheresultof theself-atention mechanismreplaced theLSTM input gate,soas to optimize long sequence memoryabilityand reducecomputing complexity.Finally,a multivariate Gausian distribution probabilityfunction wasused to discriminateanomalies.Theresults show that ading each moduleon the basis of LSTM significantly improvesthemodel'spredictionandanomalydetectionability;Comparedwiththegeneralhybridmodel Transformer-Bi-LSTM,the proposed model hasstronger prediction abilityandlowercomputational complexity.The proposed modelperformsefectivelyinrecognizingboth globalandlocalanomalies in trafictime seriesdata,which provides reference forimproving the operational efficiency and safety of the traffic system.

Keywords:computer neural networks;long sequence time-series data;anomaly detection; attention mechanism;LSTM

在交通领域,交通时序数据异常检测至关重要。(剩余11641字)

monitor