注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
文章编号:1008-1542(2023)05-0493-09
摘要:
融合Sentence-BERT和LDA的评论文本主题识别(SBERT-LDA)方法,将LDA的主题数作为K-means算法中的k值,导致算法可解释性较差、主题一致性较低。为了解决上述问题,提出基于密度Canopy的SBERT-LDA优化方法(SBERT-LDA-DC),利用密度Canopy改进K-means算法。(剩余18012字)
登录龙源期刊网
购买文章
基于密度Canopy的评论文本主题识别方法
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00