基于改进RPN的孪生小样本电力目标检测

打开文本图片集
摘 要:为了解决当前电力系统巡检难度大、效率低、数据不足以支撑大规模训练的问题,提出一种基于孪生网络的小样本检测方法。首先,在Faster RCNN(faster region convolutional neural network)目标识别算法的框架下,搭建支持图片和查询图片共享的孪生网络模型;然后,利用改进的RPN(region proposal network)模块产生更高质量的proposals;最后,在检测头上对支持图片和查询图片的RoI(region of interest)进行关联匹配。(剩余13688字)