注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘要:为进一步提高日常背景下叶片周长面积测量精度和便利性,提出一种新的深度卷积网络模型Macbm RCNN,该模型在经典Mask RCNN模型基础上引入注意力机制。Macbm RCNN能对经过压缩处理过的图片进行准确检测和标注,并最终输出叶片周长和面积。通过最终的试验数据表明,Macbm RCNN网络模型的训练准确率相比于Mask RCNN提高1.65%,在复杂图像处理中,平均训练时间提升0.022 s,平均推理时间提升0.018 s。(剩余9898字)
登录龙源期刊网
购买文章
基于Macbm-RCNN的叶片周长和面积测量方法
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00