集成学习在PM2.5预测中的应用研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:【目的】为了能实时预测PM2.5的浓度。【方法】采用多种集成学习的方法进行模拟预测。传统的预测方式多采用深度学习或普通传统改进的机器学习算法,只考虑多种污染物浓度产生的影响,而忽略了其他气象因素对PM2.5预测的影响。因此,传统的预测方式在预测精度上有着很多不足。【结果】本研究以哈尔滨近7年的气象数据和大气污染物浓度为数据集,通过皮尔逊相关系数法来提取主要特征,并过滤掉小于0.5的影响因子,同时使用多种集成学习方法对PM2.5进行预测,观察不同集成学习方法对PM2.5预测的准确度。(剩余5963字)

目录
monitor