基于AP聚类算法的RBF神经网络风速预测方法的研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:近年来,江苏地区在迎峰度夏期间出现了较大的电能供给缺口,电力系统频率失稳的风险增加,因此,在电力保供工作中,稳定的风电输出功率愈发重要。考虑到风能的随机性和间歇性,准确的风速预测可以降低风电入网时的附加成本,协助电力系统调度部门调整调度计划,提升电力系统的风电消纳与稳定运行能力。从提高超短期风速预测精度的角度出发,提出了1种基于近邻传播(AP)聚类算法的径向基函数(RBF)神经网络风速预测方法(即“AP-RBF方法”)。(剩余10491字)

monitor