基于CGKELM的风功率预测研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:风功率预测在不同应用场景中发挥着越来越重要的作用,从时间尺度上可分为超短期、短期和中长期的风功率预测。基于短期风功率预测对训练时间和预测精度均有较高要求,提出了一种利用共轭梯度(cconjugate gradient,Cg)法优化核极限学习机(kernel extreme learning machine,KELM)的方法,即利用共轭梯度核极限学习机(CGKELM)方法来预测风功率,在保证预测精度的前提下,进一步缩短KELM的训练时间。(剩余8282字)

monitor