注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:风功率预测在不同应用场景中发挥着越来越重要的作用,从时间尺度上可分为超短期、短期和中长期的风功率预测。基于短期风功率预测对训练时间和预测精度均有较高要求,提出了一种利用共轭梯度(cconjugate gradient,Cg)法优化核极限学习机(kernel extreme learning machine,KELM)的方法,即利用共轭梯度核极限学习机(CGKELM)方法来预测风功率,在保证预测精度的前提下,进一步缩短KELM的训练时间。(剩余8282字)
登录龙源期刊网
购买文章
基于CGKELM的风功率预测研究
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00