基于BP神经网络优化的卡尔曼滤波算法在轨道垂向不平顺估计中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:轨道不平顺是引起车辆和轨道振动的主要原因,也是影响列车平稳性和舒适性的关键因素。本文根据卡尔曼滤波(KF)最优估计原理,建立了车辆系统模型,通过观测车辆系统中车体、前后构架的多个惯性量,采用BP神经网络优化卡尔曼滤波(BP-KF),实现了轨道垂向不平顺的估计。结果表明,优化后的轨道垂向不平顺估计值,无论是在趋势上还是幅值上与原始值都具有较高的一致性,为轨道不平顺的间接估计提供了新的技术手段。(剩余5644字)

monitor
客服机器人