注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘要:以生成对抗网络(GAN)为代表的深度学习模型在地震数据重建中取得了较好效果,但普通GAN 网络的重建结果常存在模糊、假频等缺点。主要原因是:普通卷积模型在对缺失较大的数据进行卷积时,其卷积结果主要受缺失区域的影响,而有效区域的影响较小;且普通卷积模型属于局部操作,卷积结果主要受卷积核内数据的影响,而相距较远的数据对其影响甚微。(剩余7781字)
登录龙源期刊网
购买文章
融合部分卷积和注意力机制对抗网络模型的地震数据重建
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00