基于多分支CNN与改进级联森林的故障诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A

Abstract:Infaultdiagnosis,deeplearningmodelssuchasConvolutionalNeuralNetworks(CNN)andDepForesthavedemonstrated outstandingperformance,atractingsignificantaention.However,single-branchCNsextractliitedfaultfeatures,ndthemultigrainedscainginDeepForestrequiresredesigningandajustingparametersfordiferentdatasets.Thispaperproposesahbriddep learningmodelthatcombinesamulti-branchCNNwithanimprovedcascadeforest.Firstly,amulti-branchCNwithdiferentcnvolutionalkerelsisigdtoactveeauresiaalllisfopes.codlyincEtG dient Boosting(XGBost)handlesnonlineardatabeterthanrandomforest,onerandomforestinthecascadeforest isreplacedwith XGBoost.Thispartialeplacementleveragestheadvantagesofdiferentalgoris,tiizigtheodel'soverallpeformaneFinally,ahybriddplearning modelcombines themulti-branch CNNandtheimprovedCascadeForest.Experimentsconductedonthree bearingdatasets and one rotor dataset demonstrate the proposed model's strong effctiveness in fault diagnosis.

Keywords:faultdiagnosis;CNN;cascade forest;XGBoost

对轴承和齿轮准确的故障诊断是保证设备安全运行的基础,对工业领域的持续发展至关重要[1-3]

随着技术的发展,利用计算机和人工智能诊断机械故障成为一个热门话题[4]。(剩余13882字)

试读结束

monitor