基于计算机视觉的作物病害监测服务平台设计与研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:病害是威胁作物生长的主要因素,其特征复杂、变化多样。农业从业人员如缺乏专业知识,往往难以准确识别。以往图像识别方法常针对单一作物,图像分割后提取病害特征进行识别,无法适应多种作物。针对此问题,以水稻、番茄、柑橘、苹果为研究对象,以ResNet模型为基础构建深度学习网络框架,设计了含Squeeze-and-Excitation(SE)模块全新的全连接层,导入在ImageNet上预训练的权重,并在病害数据集上训练得到病害模型。(剩余8564字)

monitor