融合实体信息的图卷积神经网络的短文本分类模型分析

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:基于融合实体信息,建立图卷积神经网络模型,该模型结构分别由类别输出、特征学习、嵌入输入以及实体链接四个模块构成,将其应用于短文本分类,在实际操作中,可以利用实体链接工具对短文本中实体进行抽取,并在图卷积神经网络支持下,进行建模、拼接以及融合处理,最后完成短文本分类。相较于传统文本分类方法,前者不仅可以保证极高的分类准确率,其分类性能也明显优于目前文本分类领域中现有主流方法,对后续自然语言处理更进一步研究有着重要现实意义。(剩余5818字)

目录
monitor
客服机器人