融合SHAP和TSO-XGBoost模型的水路货运量预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:水路货运量需求受诸多因素影响,长江干线中游“645”工程实施后,航道通航条件得到了明显改善,为了更好分析工程实施后货运量变化趋势,提出一种新的水路货运量预测模型。首先,采用二次插值法和KNN反距离权重插值法解决高维面板数据中时间粒度不统一与缺失问题,利用层次聚类和SHAP值的可解释性综合筛选关键影响因素特征序列,降低预测模型输入数据的维度和规模,引入Halton低差异序列和准反射学习策略(QRBL)大幅提升金枪鱼群优化算法(TSO)的寻优效能,增强TSO算法对极限梯度提升(XGBoost)模型中决策树数量、决策树的深度、学习速率等决定模型拟合能力的超参组合寻优效果。(剩余16267字)

monitor