• 打印
  • 收藏
  • 加入书签
添加成功
收藏成功
分享

聊天机器人ChatGPT何以成为里程碑?

近期,聊天机器人ChatGPT大火,热度赶超2021年的元宇宙。数据显示,2022年12月5日,上线仅5天的ChatGPT用户数量突破100万,而它在1月的活跃用户数已达1亿,成为史上用户数增长最快的消费者应用。

一、凭什么是OpenAI

ChatGPT是OpenAI团队在2022年11月30日发布的全新聊天机器人模型。ChatGPT能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码等任务。

OpenAI是由创业家埃隆·马斯克、美国创业孵化器Y Combinator总裁阿尔特曼、全球在线支付平台PayPal联合创始人彼得·蒂尔等人于2015年在旧金山创立的一家非营利的AI研究公司,拥有多位硅谷重量级人物的资金支持,启动资金高达10亿美元。

OpenAI的创立目标是与其他机构合作进行AI的相关研究,并开放研究成果以促进AI技术的发展。据悉,埃隆·马斯克为公司的创始人,但于2018年离职,原因是特斯拉与AI的关联越来越深,外界担忧特斯拉将运用OpenAI的技术实现升级,同时马斯克也忍受不了长期以来没有重大产品突破,何况马斯克公司太多,实在顾不过来。

1月24日,微软公司在官方博客宣布已与OpenAI公司扩大合作伙伴关系,两家公司合作伙伴关系进入第三阶段,微软将向OpenAI进行一项为期多年、价值数十亿美元的投资,以加速其在人工智能领域的技术突破。此外,微软在宣布将搜索引擎Bing(必应)、Office全家桶嵌入ChatGPT后,还将在云计算平台Azure中整合ChatGPT,宣告Azure OpenAI服务全面上市。2月7日,微软推出整合OpenAI技术的新版必应搜索引擎和Edge浏览器。此外,亚马逊、BuzzFeed等互联网大厂同样宣布与ChatGPT展开合作。

所以,OpenAI除了人才和技术优势,背后离不开微软大金主的助力,当然微软也发挥云计算、数据等方面优势,从而实现快速突破。

二、ChatGPT发展历程

无监督学习GPT-1:GPT-1诞生于2018年6月,以Transformer(一种利用注意力机制来提高模型训练速度的模型)为核心结构,通过自左向右生成式地构建预训练任务,然后得到一个通用的预训练模型,这个模型和BERT(一种预训练的语言表征模型)一样都可用来做下游任务的微调。

多任务学习GPT-2:GPT-2诞生于2019年,同样基于Transformer,相比于GPT-1,GPT-2采用了更多的网络参数和更大的数据集,最大模型共计48层。

海量参数模型GPT-3:2020年5月,OpenAI发布了以Transformer为基础的NLP(自然语言处理)预训练模型GPT-3。GPT-3采用1750亿个参数,规模是GPT-2的117倍,不经过微调便可以识别数据中隐藏的含义。作为一个无监督模型,GPT-3几乎可以完成自然语言处理的绝大部分任务,诸如将网页描述转换为相应代码、模仿人类叙事、创作定制诗歌、生成游戏剧本等复杂任务。

基于人工标注数据和强化学习的GPT-3.5(ChatGPT原型):GPT-3.5是GPT-3和GPT-4之间的过渡版本,训练参数是GPT-3的10倍以上。ChatGPT还采用了颠覆式的迭代方式:人工标注数据和强化学习。其本质是加上了在GPT-3上去掉的微调步骤,从而实现在与人类互动时从反馈中强化学习。

展望GPT-4:GPT-4有可能是多模态的,支持文本、图片、视频等多种数据类型的输入。这意味着GPT-4可以根据文本提示词(prompt)生成图像,或者是可以输入视频,然后通过文本的形式回答问题。

几个月后,OpenAI将推出GPT-4,届时它的参数将比GPT3.5提升几个量级,算力需求将进一步提升。OpenAI在《AI與分析》报告中指出,AI模型所需算力每3—4个月就要翻一番,远超摩尔定律的18—24个月。未来如何利用新技术尽可能提升算力,将成为决定AI发展的关键因素。

三、ChatGPT加速AIGC

ChatGPT火爆的背后是AIGC(人工智能生成内容)生态的逐渐繁荣,随着数字经济与实体经济融合程度不断加深,以及互联网平台的数字化场景向元宇宙转型,人类对数字内容总量和丰富程度的整体需求不断提高。AIGC作为新型的内容生产方式,已经在传媒、电商、影视、娱乐等行业取得重大的创新进展。

AIGC也被认为是继UGC(用户生成内容)、PGC(专业生成内容)之后的新型内容生产方式。AIGC在创作成本上具有颠覆性,而且具备降本增效的多重优势,有望解决目前UGC、PGC创作质量参差不齐以及降低其有害性内容传播等问题,同时激发创意,提升内容多样性。

AIGC在内容生产上所需成本更少,生产速度更快,并且创作能力可达专业级别。以AI绘画为例,一个成熟的人工智能模型在经过特定模型训练后,仅需几个月时间就能达到专业级水平。在价格上,OpenAI最贵的AIGC语言模型达芬奇为每0.02美元750个单词,AIGC图形模型价格仅为0.02美元一张。

借由ChatGPT,文本、代码、图像生成有望率先成熟,视频、游戏紧随其后。

文本生成领域:除了较早进行探索的智能客服和聊天机器人领域,早期文本生成主要应用于辅助写作或者结构化写作。此前的文本生成一直面临的巨大挑战在于:上下文关联能力、自然语言生成能力、逻辑能力。

网站仅支持在线阅读(不支持PDF下载),如需保存文章,可以选择【打印】保存。
畅销排行榜
monitor