基于Stacking集成卷积神经网络的水稻氮素营养诊断

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:【目的】为实现水稻氮素营养状况的快速、准确诊断,提出了基于集成卷积神经网络的水稻氮素营养诊断模型,为建立高性能的氮素营养诊断模型提供思路和方法。【方法】水稻田间试验以超级杂交水稻‘两优培九’为材料,设置4个施氮水平(0、210、300、390 kg/hm2)。扫描获取水稻幼穗分化期顶部3片完全展开叶的叶片图像,将图像裁剪至只包含叶尖片段的图像,进行水稻叶片图像数据采集。(剩余18862字)

monitor