基于改进EMD-SSA-KELM 的用水量预测方法研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:针对用水量具有波动性和不确定性,且预测时存在精度低、可信度差等问题,提出了改进经验模态分解法与麻雀搜索算法优化核极限学习机的组合预测模型。首先使用长短期记忆网络对人民胜利渠的原始引黄用水量序列进行极值延拓,改进经验模态分解法的端点效应;然后通过改进后的经验模态分解法将时序信号分解为若干个本征模态分量,使原始用水量信号平稳化;最后利用麻雀搜索算法优化核极限学习机,对原始用水量序列与通过改进后经验模态分解方法的用水量序列进行预测对比。(剩余9712字)

目录
monitor