GSM-SVM在地震震级预测中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对地震震级影响因子众多且关系重复等问题,为合理预测地震震级,提出了基于网格搜索法优化支持向量机(support vector machine, SVM)的地震震级预测模型。选取地震累积频度、累积释放能量、b值、异常震群个数、地震条带个数、活动周期和相关区震级等7个影响因子,利用主成分分析法(principal component analysis, PCA)去除因子间的冗余信息,降低输入维数,并利用网格搜索法(grid search method, GSM)确定SVM参数C和g,建立震级预测模型,并对测试样本进行预测,与遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization, PSO)预测结果相对比,结果表明:PCA-GSM-SVM模型预测结果平均相对误差为1.29%,具有较高的预测精度。(剩余5046字)

monitor