基于YOLOv4-tiny模型的水稻早期病害识别方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5 320张。(剩余9571字)

目录
monitor