基于蚁群算法的多跳无线网络非均匀节点部署算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1671-5489(2025)04-1157-07

Non-uniform Node Deployment Algorithm for Multi Hop Wireless Networks Based on Ant Colony Algorithm

JIANG Cheng (Schoolof Computer and Information Science,Hubei Enginering University,Xiaogan 4320oo,Hubei Province,China)

Abstract: Aiming at the problem that uneven distribution of nodes led to incomplete network coverage,the uneven position and density of nodes increased the complexity of deployment,and the search for the optimal node was prone to geting stuck in local optimal solutions in a multi hop wireless network,the author proposed a non-uniform node deployment algorithm for multi hop wireless network based on ant colony algorithm. Firstly,the author obtained the minimum weighted distance decision variable to reduce the transmisson distance between Sink nodes and various sensors. Secondly,the author calculated the energy consumption of nodes,minimized node network loss, constructed a node deployment optimization model,and introduced compromise planning method to expand the multi-objective model into a single objective processing. Finally,the author introduced ant colony algorithm to solve the model,which could effectively traverse the potential solution space and quickly find the optimal deployment plan. The experimental results show that the network coverage of proposed algorithm is 97% ,with a maximum energy consumption of only 1.56×10-7J ,which can effectively reduce network energy consumption. The survival cycle can reach up to 1 5Oo rounds,and the optimal node deployment plan can be obtained.

Keywords: ant colony algorithm; multi hop wireless network; non-uniform node; node deployment

在实际应用环境中,无线节点的分布通常是不均匀的,例如,在农村、城市边缘或人口稀少的区域,由于地理条件、资源限制或人口分布等原因,节点的密度会不同[1-2].这种非均匀节点部署会对多跳无线网络的性能和效能产生重要影响.非均匀节点部署导致网络覆盖范围的不平衡以及增大了搜索空间和复杂性,为优化多跳无线网络的设计和性能带来了挑战.研究非均匀节点部署的目标是寻找合适的节点部署方案,以克服节点密度不平衡和空洞区域等问题,提高网络的连通性及覆盖范围.

目前,针对网络节点部署方法已进行了大量研究.滕文想等[3]通过无线电通信原理,组建WSNs节点部署空间模型,对空间进行等距划分,引入概率函数计算各节点作为簇首节点的概率,实现节点部署.该方法采用等距划分的方式将空间均匀划分为网格,不考虑实际节点部署需求和环境特征.这种划分方式会导致在一些区域节点密度过高而覆盖范围重叠,而在其他区域节点密度过低而覆盖范围不足,并存在空洞覆盖的问题.杨力等[4根据迭代,结合网络分簇算法,筛选出边缘服务有效覆盖率最高的节点部署策略.虽然采用迭代和网络分簇算法有助于提高网络覆盖率和性能,但由于复杂的搜索空间和非均匀节点部署会导致算法陷入局部最优解,节点部署的效果受初始解的影响,选择不合适的初始解会导致最终结果不能达到全局最优.Yao等[5通过蛾焰算法实现了网络节点部署,蛾焰算法虽然是一种优化算法,但其搜索机制或参数设置无法很好地适应无线网络中的节点部署问题,导致算法易陷入局部最优解.Gupta等[在设定的约束条件下进行网络节点部署,尽管约束条件可以减小搜索空间的范围和复杂性,但在无线网络中,节点部署问题的搜索空间仍很大,易陷入局部最优解。(剩余7901字)

monitor