基于PSO-XGB混合优化技术的浅层地下温度预测

——以长春市为例

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 准确预测浅层地下温度对于降低投资风险和推动浅层地热能开发利用具有重要意义。本研究基于粒子群优化(PSO)和极限梯度提升(XGB)的混合模型(PSO-XGB),并将其与K近邻(KNN)、支持向量回归(SVR)、随机森林(RF)和极限梯度提升(XGB)等单一模型进行了比较。首先收集了54组钻孔数据,使用克里金插值法对数据集进行扩充,经过相关性分析最终选择经纬度坐标、年平均降雨量、年平均气温和与断裂距离等因素用作预测100 m地下温度的输入特征。(剩余17008字)

monitor