基于CV-XGBoost的水下分流河道砂体厚度预测及应用

打开文本图片集
摘要:针对水下分流河道砂体单层厚度薄,叠置、交叉严重,横向非均质性强,井震关系一致性不好等问题,研究了一种基于交叉验证的极限梯度提升(CV-XGBoost)储层厚度预测方法。先用相关分析与多重共线性评价去除冗余属性,然后进行模型训练与参数集寻优,最后用验证集进行厚度预测。结果表明:1)对于较少样本的储层预测,有必要做交叉验证,以提高储层预测精度;2)XGBoost用具有二阶偏导的正则项来控制模型收敛进度,预测精度好于常规的LASSO(least absolute shrinkage and selection operator)回归、GBDT(gradient boosting decision tree)和SVM(support vector machine)方法;3)验证集占比较低的储层预测可用来了解砂体宏观展布,较高的验证集占比则有助于提高砂体描述的精度;4)本研究区平均振幅、平均能量、弧长、主频为厚度预测贡献度较大的属性。(剩余10205字)