注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:
针对锂电池容量衰退过程中容量再生和曲线持续波动导致的剩余使用寿命(RUL)难以精确预测的问题,提出基于变分模态分解(VMD)和改进滑动窗口(ISW)的长短期记忆(LSTM)神经网络预测模型。首先,使用VMD对容量数据进行分解,区分主退化和容量再生趋势;其次,利用ISW动态捕捉曲线波动,提高预测精度;最后,使用LSTM建模,LSTM和VMD的参数均使用贝叶斯优化(BO)寻优。(剩余17192字)
登录龙源期刊网
购买文章
基于ISW和优化VMD-LSTM的锂电池剩余寿命预测
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00