融合先验知识的混凝土侵彻深度试验数据异常点检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要: 为剔除混凝土侵彻深度试验数据异常点,提出了一种融合先验知识的异常检测算法。利用反向传播(backpropagation, BP)神经网络模型拟合试验样本数据的分布,结合偏差指标筛选离群样本点,并通过经验算法评价模型异常检测性能。针对试验数据特点选择全量梯度下降结合动量优化方法,从而提高模型迭代训练的稳定性和效率,并且在构建模型过程中融合领域先验知识约束对样本数据的拟合,使得模型在训练过程中能反映附加特征的影响。(剩余2496字)

monitor