融合数据同化与机器学习的流域径流模拟方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:环境变化影响下流域径流的精确模拟对洪涝灾害防治与区域水资源管理都具有重要意义。在径流模拟研究中,现有机器学习模型未能充分考虑水文中间状态变量对降雨-径流过程的影响,本研究基于集合卡尔曼滤波(EnKF)更新水文状态变量,结合主成分分析(PCA)提取预报因子的主要特征,采用长短时记忆神经网络(LSTM)构建考虑水文中间变量的机器学习水文模型EnKF-PCA-LSTM。(剩余18458字)

monitor