基于YOLOv3的风机叶片故障检测模型

打开文本图片集
DOI:10.20030/j.cnki.1000⁃3932.202403017
摘 要 针对风机工作中由于高海拔地理位置、恶劣天气等因素的影响,致使风机叶片出现裂纹、沙眼等缺陷故障,提出基于YOLOv3算法的风机叶片故障检测模型。将风机叶片缺陷区域具有YOLO格式的数据集划分为训练集与测试集,输入YOLOv3模型进行实验,结果表明:YOLOv3模型与YOLOv2模型相比,精度提升3.7%,达到了90.6%;召回率提升3.2%,达到了90.5%;精度平均值提升4.8%,达到了76.2%。(剩余11676字)