基于CBAM和Unet的遥感影像水体识别

打开文本图片集
摘 要:使用Unet深度学习技术,引入注意力机制CBAM(Convolutional Block Attention Module)动态捕捉图像的关键特征信息,并根据每个通道的重要性自适应地调整注意力权重,增强水体识别模型的表达能力和性能。通过实验验证,相比Unet水体识别模型,CBAM+Unet水体识别模型识别的河流在宽度、走向、轮廓上更接近真实河流,而且对河流的边线识别也更加精细,该模型的准确率、精确率、召回率、F1值、Kappa系数各项指标分别达到98.24%、98.73%、99.32%、99.02%、89.77%,Kappa系数和 Unet相比提高8.52%,说明CBAM+Unet水体识别模型具有更高的识别精度和水边线提取能力。(剩余8677字)