基于PSO-SVM算法的空气质量分类研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:由于空气组成成分多、含量波动较大,严重影响着分类结果的准确率,因此为了增加空气质量分类预测的可靠性,提出了粒子群(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machin,SVM)算法的分类方法。此方法首先通过迭代寻优的方式在全局搜寻最优粒子作为支持向量机的运行参数,之后通过训练集数据进行机器学习建立了支持向量机多分类模型,最后将测试集的输入向量导入该模型得到分类结果。(剩余6875字)

monitor