注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘要:为探究铜(Cu)和锌(Zn)在不同类型土壤中的老化过程及其主要影响因素,本研究开展了为期90 d的培养实验,向12种不同类型的土壤外源添加Cu和Zn。基于传统动力学模型、逐步线性回归和机器学习模型,构建了土壤中Cu和Zn有效态变化的预测模型。此外,基于沙普利可加性模型解释方法(Shapley Additive Explanations,SHAP),分析了影响Cu和Zn有效态含量的关键土壤因子的作用。(剩余19494字)
登录龙源期刊网
购买文章
基于机器学习对铜和锌在土壤中的老化预测和关键因子识别
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00