基于XGB-KF模型的农业温室温度预测

  • 打印
  • 收藏
收藏成功


打开文本图片集

doi:10.11835/j.issn.1000-582X.2025.04.009

引用格式:黄威,贾若然,钟坤华,等.基于XGB-KF模型的农业温室温度预测[J].重庆大学学报,2025,48(4): 108-114.

中图分类号:TP399 文献标志码:A 文章编号:1000-582X(2025)04-108-07

Agricultural greenhouse temperature prediction based on the XGB-KFmodel

HUANG Wei'2, JIA Ruoran, ZHONG Kunhua', LIU Shuguang'2 (1.Chogqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,Chongqing 400714, P.R.China; 2. University of Chinese Academy of Sciences,Beijing 10o049, P.R.China; 3.Iflytek Co., Ltd., Hefei 230031, P.R. China)

Abstract:To addess the challenge of agricultural greenhouse temperature measurement being highly susceptible to noise,which limits direct prediction accuracy, this study proposes an integrated prediction model, XGB-KF, combining XGBoost and the Kalman filter.First, the model estimates the current greenhouse temperature using XGBoost.Then,the Kalman filter dynamicall adjusts the estimated result to refine the prediction.Numerical experiments are conducted using sensor data from a greenhouse in Zhuozhou, with root mean square error (RMSE) as the main evaluation metric. Compared with XGBoost, Bi-LSTM, and Bi-LSTM-KF methods, the XGB-KF model reduces RMSE by 5.22% , 10.85% and 7.45% respectively.

Keywords: integrated model; machine learning; time series; greenhouse temperature

温度作为农作物生长的重要环境因素,影响着作物的生长速度、产量和质量,如何准确预测和调控温度成为现代农业的重要问题。(剩余8282字)

monitor